organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A. Moussaif,^a E. M. Essassi^a and M. Pierrot^b*

^aLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences, Université Mohamed V, Rabat, Morocco, and ^bLBS-UMR 6517, Centre Scientifique Saint-Jérôme, 13397 Marseille CEDEX 20, France

Correspondence e-mail: marcel.pierrot@lbs.u-3mrs.fr

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.001 \text{ Å}$ R factor = 0.052 wR factor = 0.091 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3,4,5-Tetrahydro-1,3-thiazepino[3,2-a]-[1,3]benzimidazole

The structure of the title compound, $C_{11}H_{12}N_2S$, established by an X-ray crystallographic study, shows that the molecule is composed of three cycles: bicyclic benzimidazole and the thiazepine ring which is bent. Received 13 March 2001 Accepted 19 March 2001 Online 23 March 2001

Comment

Thiazepinobenzimidazole derivatives constitute an interesting series of heterocyclic compounds, particularly for their biological activities (Nawrocka & Zimecki, 1998; Taniguchi *et al.*, 1993; Kuehler *et al.*, 1998; Tabata *et al.*, 1995; Pedini *et al.*, 1994; Piras *et al.*, 1993; Nukaya *et al.*, 1991). We report here the preparation and crystal structure determination of the title compound, (I).

Selected bond distances and angles are given in Table 1. The molecule is composed of three rings, *viz*. the benzimidazole system and a thiazepine ring. The benzimidazole system is planar (r.m.s. deviation: 0.0136 Å) and the thiazepine sevenmembered ring is composed of three planar fragments: S1/C2/N10/C11, which is coplanar with the benzimidazole and at an angle of 118.9 (5)° to the S1/C11/C12/C14 fragment, which is, in turn, at an angle of 121.1 (4)° to the C12/C13/C14 triangle. According to Cremer & Pople (1975), the seven-membered ring conformation can be described on the basis of the total puckering amplitude $Q_T = 0.872$ (1) Å and the asymmetry parameters that are indicative of a local pseudo-twofold axis running through C13 and the midpoint of the C2–N10 bond.

Experimental

A solution of benzimidazole-2-thione (0.007 mol) and 1,4-dibromobutane (0.014 mol) in 50 ml of saturated aqueous solution of sodium bicarbonate and 50 ml of 2-propanol, was heated under reflux for 1 h. After isolation of 1,4-bis(2-mercaptobenzimidazolyl)butane, the reaction product was obtained by removing the 2-propanol and then extracting the residue with chloroform. Removal of chloroform gave the title compound, yield: 40%, m.p. 403–407 K. Crystals were obtained by evaporation of an ethanol solution at room temperature.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Perspective view of the title molecule showing the labelling of the atoms, with displacement ellipsoids at the 50% probability level.

Z = 2

Crystal data

 $\begin{array}{l} C_{11}H_{12}N_2S\\ M_r = 204.29\\ Triclinic, P\overline{1}\\ a = 6.6159 \ (7) \ \mathring{A}\\ b = 8.507 \ (1) \ \mathring{A}\\ c = 9.468 \ (1) \ \mathring{A}\\ \alpha = 88.57 \ (6)^\circ\\ \beta = 72.53 \ (9)^\circ\\ \gamma = 80.89 \ (4)^\circ\\ V = 501.7 \ (1) \ \mathring{A}^3 \end{array}$

Data collection

KappaCCD diffractometer φ scans 1581 measured reflections 1573 independent reflections 1476 reflections with $I > 3\sigma(I)$

Refinement

R = 0.052 wR = 0.091 S = 1.001476 reflections 127 parameters D_x = 1.352 Mg m⁻³ Mo Kα radiation Cell parameters from 2941 reflections $\theta = 1-25.1^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 298 K Prism, colourless 0.45 × 0.30 × 0.15 mm

 $\begin{aligned} R_{\text{int}} &= 0.037\\ \theta_{\text{max}} &= 25.2^{\circ}\\ h &= -7 \rightarrow 0\\ k &= -10 \rightarrow 10\\ l &= -11 \rightarrow 11 \end{aligned}$

H-atom parameters constrained
$$\begin{split} &w = 1/[\mathrm{s}^2(F_o{}^2) + 0.03F_o{}^2] \\ &(\Delta/\sigma)_{\mathrm{max}} = 0.028 \\ &\Delta\rho_{\mathrm{max}} = 0.15 \ \mathrm{e}\ \mathrm{\mathring{A}}{}^{-3} \\ &\Delta\rho_{\mathrm{min}} = -0.17 \ \mathrm{e}\ \mathrm{\mathring{A}}{}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

S1-C2	1.7437 (7)	N10-C2	1.3635 (11)
S1-C14	1.8245 (8)	N10-C9	1.3801 (8)
N3-C2	1.3228 (10)	N10-C11	1.4640 (9)
N3-C4	1.3855 (10)		
C2-S1-C14	100.36 (4)	C2-N10-C11	127.57 (6)
C2-N3-C4	103.52 (7)	C9-N10-C11	126.32 (6)
C2-N10-C9	106.09 (6)		

Data collection: *KappaCCD Reference Manual* (Nonius, 1998); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *maXus* (Mackay *et al.*, 1999); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *maXus*.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1362.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kuehler, T. C., Swanson, M., Shcherbuchin, V., Larsson, H., Mellgard, B., Sjoestroem, J.-E. (1998). J. Med. Chem. 41, 1777–1788.
- Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). *maXus*. Nonius, The Netherlands, MacScience, Japan, and The University of Glasgow, Scotland.

Nawrocka, W. & Zimecki, M. (1998). Arch. Pharm. (Weinheim), 331, 249-253.

Nonius (1998). *KappaCCD Reference Manual*. Nonius BV, Delft, The Netherlands.

Nukaya, H., Watanabe, H., Ishida, H., Tsuji, K. & Suwa, Y. (1991). Chem. Pharm. Bull. 39, 533–535.

- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.
- Pedini, M., Bistocchi, G. A., Ricci, A., Bastianini, L., Lepri, E.(1994). Farmaco, 49, 823–828.
- Piras, S., Loriga, M., Paglietti, G., Sparatore, F. & Demontis, M. P. (1993). Farmaco, 48, 1249–1260.
- Tabata, H., Matsuzawa, T., Hanada, T., Ishikawa, A. & Yamada, M. (1995). Arzneim. Forsch. 45, 760–766.

Taniguchi, K., Shigenaga, S., Ogahara, T., Fujitsu, T. & Matsuo, M. (1993). Chem. Pharm. Bull. 41, 301–309.